Field of Research	Faculty	Detailed Description of Research Field
Energy Materials Engineering	SUEMASU Takashi	High-efficiency thin-film solar cells, thermoelectric devices, and spintronics materials using safe, stable, and abundant elements.
	NISHIBORI Eiji	Structural Materials Science : Structural materials science using advanced x-ray region photon sources. Ultra-high resolution charge density study; In-situ observation of nano-particle synthesis; structural studies of thermoelectrics, battery materials, molecular functional materials. International research collaboration using research unit project.
	MORITOMO Yutaka	Energy materials science : Research of the energy materials and devices, such as, sodium-ion secondary battery, perovskite solar cell. thermoelectrics, catalyst, superconductor, and so on with use of Synchrotron-radiation X-ray (SPring-8, PF) and nano probes (NIMS), and so on.
	SAKURAI Takeaki	Development of highly efficient organic and inorganic thin-film solar cells. Characterization of defects in power semiconductor devices.
	SUZUKI Yoshikazu	Development of new inorganic materials for energy and environmental applications such as solar cells and environmental purification filters
	HADA Masaki	Femtosecond time-resolved electron diffraction measurements: filming "molecular movies" of photo reactive or responsive materials , Terahertz-wave engineering.
	MORI Takao (NIMS)	We focus on developing highly functional energy environment materials, such as, thermoelectric and battery materials, through atomic network control, synthesis of new materials, nano/microstructure control of materials with strong structure-property relationships from their topology.
	INOUE Isao (AIST)	Ultra-low-power IT is an urgent necessity, and we challenge the problem by mimicking the brain. Artificial neurons/synapses and their circuits are in development with new materials and physics POV.

Doctoral Program in Materials Innovation

Field of Research	Faculty	Detailed Description of Research Field
	SEPEHRI AMIN Hossein (NIMS)	Studies on high-performance magnetic materials for green energy conversions and data storage applications using a combinatorial research approach, i. e. multi-scale microstructure characterizations, micromagnetic simulations, data science, and materials processing.
Environment friendly Materials	YAMAMOTO Yohei	Self-assembly of π -conjugated molecules, polymers, and biomolecules to construct electronic, optical, and energy conversion devices.
	SHIRAKI Kentaro	Technology of protein folding and application of biomaterials
	KONDO Takahiro	Formation and application of new two-dimensional material of boron, development of a substitute material of Pt at the Fuel Cell electrode using nitrogen-doped carbon, and reaction dynamics at surface based on the fine experimental measurements.
	TSUJIMURA Seiya	Electrochemistry of redox enzymes and its application to biosensors and biofuel cells
	NAKAMURA Takashi	Precise construction of functional molecules based on supramolecular chemistry, and exploration of their properties such as molecular recognition and selective reaction. Studies on supramolecular metal complexes utilizing organic ligands and metal ions.
	OISHI Motoi	Development and design of novel point of care testing (POCT) devices and nano-machines based on DNA nano-system.
	KUWABARA Junpei	Development of new molecular catalysts, facile synthetic methodology for conjugated molecules, and luminescent metal complexes
	TAKEUCHI Masayuki (NIMS)	Creation of new organic nanochemistry thorough the design, synthesis, and characterization of organic, macromolecular, and supramolecular materials with photo- and electro-active components, chemosensing functions, dynamic mechanical characters.
	NAITO Masanobu (NIMS)	Development of functional polymer materials using machine learning and smart labs. In particular, we will create innovative composite materials that support people's safety and security through the development of bonding and coating materials with different materials, antibacterial, antiviral, and superhydrophobic materials.

Field of Research	Faculty	Detailed Description of Research Field
	Lok Kumar Shrestha (NIMS)	Fabrication of fullerene-based new functional nanomaterials using nanoarchitectonics concept. We produce ultra-high surface area nanoporous fullerene crystals, and convert them into hierarchically porous carbon materials by high temperature heat treatment for the high-performance supercapacitor and vapor sensing applications.
	NORIKANE Yasuo (AIST)	Photofunctional organic molecules especially showing photo-induced solid-liquid phase transitions and lightdriven mechanical motion.
	HIMEDA Yuichiro (AIST)	Design and development of organometallic catalysts for carbon dioxide conversion and hydrogen storage. Methanol synthesis at low temperature from carbon dioxide. Hydrogen production from formic acid.
Electronic Materials	HASE Muneaki	Ultrafast laser spectroscopy on semiconductors and dielectric materials using femtosecond laser and application to optical devise and controlling phase transitions
	YANAGIHARA Hideto	Thin film growth of advanced magnetic oxides for spintronics devices
	OKADA Susumu	Using the first-principles techniques based on the quantum mechanics, we study physical and chemical properties of nanoscale materials, ranging from the semiconductor to biomaterials.
	OHNO Yuzo	Studies of electronic, optical, and spin properties of semiconductor nanostructures, and spin coherence for quantum information and low-power devices.
	TOKURA Yasuhiro	Theory of quantum transport in nano-structures made of various semiconductors. Non-equilibrium dynamics and quantum coherence in compound quantum system and possible application to quantum computations.
	TOKORO Hiroko	Development of novel materials with advanced light- responsive functionalities, accompanying changes of optical, magnetic, and electric properties. Metal complexes and metal oxides are the main target materials
	TAKEUCHI Osamu	Development of new microscopy techniques by combining nanometer-resolving scanning probe microscopy and optical measurement techniques, in order to reveal nanometer-scale optoelectronicprocesses in solar

Field of Research	Faculty	Detailed Description of Research Field
		cells, light emitting diodes, and spintronics devices and to improve their device performance
	JUNG Min-Cherl	Understanding of defect, phonon-dispersion, and electronic structures in organic-inorganic hybrid perovskite materials and new applications such as THz- wave sensing, modulating, and imaging devices.
	TONG Xiao-Min	Understand dynamical processes of atoms, molecules and solids in an ultrashort intense laser field and search an effective way to control the processes with intense laser in femtosecond domain by first principles simulations.
	FUJIOKA Jun	Research on electronic, optical and thermal property in strongly correlated electron material and topological quantum material. Searching new quantum phenomena and functions by using state of the art material synthesis technique, spectroscopy and fundamental characterization.
	MARUMOTO Kazuhiro	Development and characterization of semiconductor materials, and their application to semiconductor devices such as solar cell, light-emitting diodes, transistors, etc. using functional materials such as organic materials, perovskites, low-dimensional materials, etc.
	YUASA Shinji (AIST)	Research and development of magnetic tunnel junctions, magnetoresistive random access memory MRAM and other spintronic devices.
	TAKANO Yoshihiko (NIMS)	We are focusing on the physical properties of high-Tc superconductor, diamond superconductor, Fe-based superconductor and carbon nanotube. Development of novel devices, including optical and field effect devices, using superconductors and nano-technologies are targets.
	MITANI Seiji (NIMS)	Development of magnetic materials and nanostructures by Atomic scale control based on state-of- the-art thin film growth techniques. Searching and understanding new functionalities in spin transport and their application to Spintronic devices.

Field of Research	Faculty	Detailed Description of Research Field
Synchrotron-Radiation Materials Engineering	AMEMIYA Kenta (KEK)	Elucidation of the function expression mechanism by operando observation of surface and interface using quantum beams.
	KUMAI Reiji (KEK)	Study using quantum beams such as synchrotron radiation to reveal the origin of macroscopic physical properties from the microstructure inside materials in condensed matter.

(Note)

• Applicants should have a thorough discussion with a professor of their research field about your research plan in advance.

Inquiries about the entrance examination should be sent to:

Prof. Yohei Yamamoto, Chair, Doctoral Program in International Materials Innovation Telephone: 81-29-853-5030

Prof. Muneaki Hase, Member of the Academic Committee, Doctoral Program in International Materials Innovation Telephone: 81-29-853-5305 (AIST) = The National Institute of Advanced Industrial Science and Technology (NIMS) = The National Institute for Materials Science

(KEK) = High Energy Accelerator Research Organization